If anyone just happens to have an ATMega168 or 328 with the Arduino bootloader, I have been working on this code and have got it to a working stage. It will however ONLY work on the ATMega168 or 328's, any others will need modifications in the code. I decided to use an ATMega as it is extremely easy to program them without and AVR programmer (With the Arduino bootloader). Yes, it may be overkill, but there is room to expand if you want a strobing feature, colour fade or whatever else you want!
Code:
/******************************* Addressing variable declarations *****************************/
#include <EEPROM.h>
#define NUMBER_OF_CHANNELS 8
//the number of channels we want to receive (8 by default).
#define SWITCH_PIN_0 11 //the pin number of our "0" switch
#define SWITCH_PIN_1 12 //the pin number of our "1" switch
int dmxaddress = 1;
/* The dmx address we will be listening to. The value of this will be set in the Addressing()
* function, if triggered, and read from EEPROM addresses 510 and 511.
/******************************* MAX485 variable declarations *****************************/
#define RECEIVER_OUTPUT_ENABLE 2
/* receiver output enable (pin2) on the max485.
* will be left low to set the max485 to receive data. */
#define DRIVER_OUTPUT_ENABLE 3
/* driver output enable (pin3) on the max485.
* will left low to disable driver output. */
#define RX_PIN 0 // serial receive pin, which takes the incoming data from the MAX485.
#define TX_PIN 1 // serial transmission pin
/******************************* DMX variable declarations ********************************/
volatile byte i = 0; //dummy variable for dmxvalue[]
volatile byte dmxreceived = 0; //the latest received value
volatile unsigned int dmxcurrent = 0; //counter variable that is incremented every time we receive a value.
volatile byte dmxvalue[NUMBER_OF_CHANNELS]; //stores the DMX values we're interested in using.
volatile boolean dmxnewvalue = 0; //set to 1 when new dmx values are received.
/******************************* Timer2 variable declarations *****************************/
volatile byte zerocounter = 0;
/* a counter to hold the number of zeros received in sequence on the serial receive pin.
* When we've received a minimum of 11 zeros in a row, we must be in a break. As written,
* the timer2 ISR actually checks for 22 zeros in a row, for the full 88uS break. */
void setup() {
/******************************* Max485 configuration ***********************************/
pinMode(RECEIVER_OUTPUT_ENABLE, OUTPUT);
pinMode(DRIVER_OUTPUT_ENABLE, OUTPUT);
digitalWrite(RECEIVER_OUTPUT_ENABLE, LOW);
digitalWrite(DRIVER_OUTPUT_ENABLE, LOW); //sets pins 3 and 4 to low to enable reciever mode on the MAX485.
pinMode(RX_PIN, INPUT); //sets serial pin to receive data
/******************************* Addressing subroutine (Not used for testing) *********************************/
/* pinMode(SWITCH_PIN_0, INPUT); //sets pin for '0' switch to input
digitalWrite(SWITCH_PIN_0, HIGH); //turns on the internal pull-up resistor for '0' switch pin
pinMode(SWITCH_PIN_1, INPUT); //sets pin for '1' switch to input
digitalWrite(SWITCH_PIN_1, HIGH); //turns on the internal pull-up resistor for '1' switch pin
byte switch1 = 0;
byte switch0 = 0; //the switch states for the 1 and 0 pin
switch0 = digitalRead(SWITCH_PIN_0);
switch1 = digitalRead(SWITCH_PIN_1);
if (switch0 == 0 || switch1 == 0)
{
Addressing(switch0, switch1);
//call the addressing subroutine if either switch is pressed.
}*/
//read the previously stored value from EEPROM addresses 510 and 511.
dmxaddress = EEPROM.read(511); //read the high byte into dmxaddress
dmxaddress = dmxaddress << 8;
//bitshift the high byte left 8 bits to make room for the low byte
dmxaddress = dmxaddress | EEPROM.read(510); //read the low byte into dmxaddress
dmxaddress = dmxaddress + 3;
/* this will allow the USART receive interrupt to fire an additional 3 times for every dmx frame.
* Here's why:
* Once to account for the fact that DMX addresses run from 0-511, whereas channel numbers
* start numbering at 1.
* Once for the Mark After Break (MAB), which will be detected by the USART as a valid character
* (a zero, eight more zeros, followed by a one)
* Once for the START code that precedes the 512 DMX values (used for RDM). */
/******************************* USART configuration ************************************/
Serial.begin(250000);
/* Each bit is 4uS long, hence 250Kbps baud rate */
cli(); //disable interrupts while we're setting bits in registers
bitClear(UCSR0B, RXCIE0); //disable USART reception interrupt
/******************************* Timer2 configuration ***********************************/
//NOTE: this will disable PWM on pins 3 and 11.
bitClear(TCCR2A, COM2A1);
bitClear(TCCR2A, COM2A0); //disable compare match output A mode
bitClear(TCCR2A, COM2B1);
bitClear(TCCR2A, COM2B0); //disable compare match output B mode
bitSet(TCCR2A, WGM21);
bitClear(TCCR2A, WGM20); //set mode 2, CTC. TOP will be set by OCRA.
bitClear(TCCR2B, FOC2A);
bitClear(TCCR2B, FOC2B); //disable Force Output Compare A and B.
bitClear(TCCR2B, WGM22); //set mode 2, CTC. TOP will be set by OCRA.
bitClear(TCCR2B, CS22);
bitClear(TCCR2B, CS21);
bitSet(TCCR2B, CS20); // no prescaler means the clock will increment every 62.5ns (assuming 16Mhz clock speed).
OCR2A = 64;
/* Set output compare register to 64, so that the Output Compare Interrupt will fire
* every 4uS. */
bitClear(TIMSK2, OCIE2B); //Disable Timer/Counter2 Output Compare Match B Interrupt
bitSet(TIMSK2, OCIE2A); //Enable Timer/Counter2 Output Compare Match A Interrupt
bitClear(TIMSK2, TOIE2); //Disable Timer/Counter2 Overflow Interrupt Enable
sei(); //reenable interrupts now that timer2 has been configured.
} //end setup()
void loop() {
// the processor gets parked here while the ISRs are doing their thing.
if (dmxnewvalue == 1) { //when a new set of values are received, jump to action loop...
digitalWrite(13, HIGH);
byte j;
for(j = 0; j < NUMBER_OF_CHANNELS; j++)
{
Serial.print(dmxvalue[j]);
}
analogWrite(5, dmxvalue[2]); // FOR MY DMX CONTROLLER, ARRAY VALUES 0 AND 1 ARE USELESS. THIS MAY NOT BE THR CASE FOR YOU, SO MAKE SURE TO CHECK!
analogWrite(6, dmxvalue[3]);
analogWrite(6, dmxvalue[4]);
dmxnewvalue = 0;
dmxcurrent = 0;
zerocounter = 0; //and then when finished reset variables and enable timer2 interrupt
i = 0;
bitSet(TIMSK2, OCIE2A); //Enable Timer/Counter2 Output Compare Match A Interrupt
}
digitalWrite(13, LOW);
} //end loop()
//Timer2 compare match interrupt vector handler
ISR(TIMER2_COMPA_vect) {
if (bitRead(PIND, PIND0)) { // if a one is detected, we're not in a break, reset zerocounter.
zerocounter = 0;
}
else {
zerocounter++; // increment zerocounter if a zero is received.
if (zerocounter == 22) // if 22 0's are received in a row (88uS break)
{
bitClear(TIMSK2, OCIE2A); //disable this interrupt and enable reception interrupt now that we're in a break.
bitSet(UCSR0B, RXCIE0);
}
}
} //end Timer2 ISR
ISR(USART_RX_vect){
dmxreceived = UDR0;
/* The receive buffer (UDR0) must be read during the reception ISR, or the ISR will just
* execute again immediately upon exiting. */
dmxcurrent++; //increment address counter
if(dmxcurrent > dmxaddress) { //check if the current address is the one we want.
dmxvalue[i] = dmxreceived;
i++;
if(i == NUMBER_OF_CHANNELS) {
bitClear(UCSR0B, RXCIE0);
dmxnewvalue = 1; //set newvalue, so that the main code can be executed.
}
}
} // end ISR
Wire it like this: 
And you will need to replace your HardwareSerial.cpp file in /hardware/core/arduino with this for it to compile (MAKE SURE TO BACKUP YOUR ORIGINAL AS YOU WILL HAVE TO REPLACE IT TO RETURN TO NORMAL PROGRAMMING!!):
Code:
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "wiring.h"
#include "wiring_private.h"
#include "HardwareSerial.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#define RX_BUFFER_SIZE 128
struct ring_buffer {
unsigned char buffer[RX_BUFFER_SIZE];
int head;
int tail;
};
ring_buffer rx_buffer = { { 0 }, 0, 0 };
#if defined(__AVR_ATmega1280__)
ring_buffer rx_buffer1 = { { 0 }, 0, 0 };
ring_buffer rx_buffer2 = { { 0 }, 0, 0 };
ring_buffer rx_buffer3 = { { 0 }, 0, 0 };
#endif
inline void store_char(unsigned char c, ring_buffer *rx_buffer)
{
int i = (rx_buffer->head + 1) % RX_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != rx_buffer->tail) {
rx_buffer->buffer[rx_buffer->head] = c;
rx_buffer->head = i;
}
}
#if defined(__AVR_ATmega1280__)
SIGNAL(SIG_USART0_RECV)
{
unsigned char c = UDR0;
store_char(c, &rx_buffer);
}
SIGNAL(SIG_USART1_RECV)
{
unsigned char c = UDR1;
store_char(c, &rx_buffer1);
}
SIGNAL(SIG_USART2_RECV)
{
unsigned char c = UDR2;
store_char(c, &rx_buffer2);
}
SIGNAL(SIG_USART3_RECV)
{
unsigned char c = UDR3;
store_char(c, &rx_buffer3);
}
/*
#else
#if defined(__AVR_ATmega8__)
SIGNAL(SIG_UART_RECV)
#else
SIGNAL(USART_RX_vect)
#endif
*/
{
#if defined(__AVR_ATmega8__)
unsigned char c = UDR;
#else
unsigned char c = UDR0;
#endif
store_char(c, &rx_buffer);
}
#endif
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(ring_buffer *rx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x)
{
_rx_buffer = rx_buffer;
_ubrrh = ubrrh;
_ubrrl = ubrrl;
_ucsra = ucsra;
_ucsrb = ucsrb;
_udr = udr;
_rxen = rxen;
_txen = txen;
_rxcie = rxcie;
_udre = udre;
_u2x = u2x;
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(long baud)
{
uint16_t baud_setting;
bool use_u2x;
// U2X mode is needed for baud rates higher than (CPU Hz / 16)
if (baud > F_CPU / 16) {
use_u2x = true;
} else {
// figure out if U2X mode would allow for a better connection
// calculate the percent difference between the baud-rate specified and
// the real baud rate for both U2X and non-U2X mode (0-255 error percent)
uint8_t nonu2x_baud_error = abs((int)(255-((F_CPU/(16*(((F_CPU/8/baud-1)/2)+1))*255)/baud)));
uint8_t u2x_baud_error = abs((int)(255-((F_CPU/(8*(((F_CPU/4/baud-1)/2)+1))*255)/baud)));
// prefer non-U2X mode because it handles clock skew better
use_u2x = (nonu2x_baud_error > u2x_baud_error);
}
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
}
uint8_t HardwareSerial::available(void)
{
return (RX_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % RX_BUFFER_SIZE;
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (_rx_buffer->tail + 1) % RX_BUFFER_SIZE;
return c;
}
}
void HardwareSerial::flush()
{
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
_rx_buffer->head = _rx_buffer->tail;
}
void HardwareSerial::write(uint8_t c)
{
while (!((*_ucsra) & (1 << _udre)))
;
*_udr = c;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(__AVR_ATmega8__)
HardwareSerial Serial(&rx_buffer, &UBRRH, &UBRRL, &UCSRA, &UCSRB, &UDR, RXEN, TXEN, RXCIE, UDRE, U2X);
#else
HardwareSerial Serial(&rx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UDR0, RXEN0, TXEN0, RXCIE0, UDRE0, U2X0);
#endif
#if defined(__AVR_ATmega1280__)
HardwareSerial Serial1(&rx_buffer1, &UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UDR1, RXEN1, TXEN1, RXCIE1, UDRE1, U2X1);
HardwareSerial Serial2(&rx_buffer2, &UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UDR2, RXEN2, TXEN2, RXCIE2, UDRE2, U2X2);
HardwareSerial Serial3(&rx_buffer3, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UDR3, RXEN3, TXEN3, RXCIE3, UDRE3, U2X3);
#endif